반응형
1. 문제
A non-empty array A consisting of N integers is given. A pair of integers (P, Q), such that 0 ≤ P < Q < N, is called a slice of array A (notice that the slice contains at least two elements). The average of a slice (P, Q) is the sum of A[P] + A[P + 1] + ... + A[Q] divided by the length of the slice. To be precise, the average equals (A[P] + A[P + 1] + ... + A[Q]) / (Q − P + 1).
For example, array A such that:
A[0] = 4
A[1] = 2
A[2] = 2
A[3] = 5
A[4] = 1
A[5] = 5
A[6] = 8
contains the following example slices:
slice (1, 2), whose average is (2 + 2) / 2 = 2;
slice (3, 4), whose average is (5 + 1) / 2 = 3;
slice (1, 4), whose average is (2 + 2 + 5 + 1) / 4 = 2.5.
The goal is to find the starting position of a slice whose average is minimal.
Write a function:
int solution(vector<int> &A);
that, given a non-empty array A consisting of N integers, returns the starting position of the slice with the minimal average. If there is more than one slice with a minimal average, you should return the smallest starting position of such a slice.
For example, given array A such that:
A[0] = 4
A[1] = 2
A[2] = 2
A[3] = 5
A[4] = 1
A[5] = 5
A[6] = 8
the function should return 1, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−10,000..10,000].
주어진 배열에서 최저 평균 값을 가지는 구간의 시작 index를 구하는 문제.
예) return 1
| A[0] | A[1] | A[2] | A[3] | A[4] | A[5] | A[6] |
| 4 | 2 | 2 | 5 | 1 | 5 | 8 |
| Slice | Average |
| (1, 2) | (2 + 2) / 2 = 4 |
| (3, 4) | (5 + 1) / 2 =3 |
| (1, 4) | (2 + 2 + 5 + 1) / 4 = 2.5 |
2. 매개변수 조건
- vector A 크기: 2 ~ 1,000,000
- vector A 요소 값: -10,000 ~ 10,000
3. 코드 (C++)
모든 평균 값을 구한다.
int solution(vector<int> &A) {
double min = 10001;
int pos = 0;
for(size_t i = 0 ; i < A.size(); i++)
{
double avg = 0;
int cnt = 1;
int sum = A[i];
//모든 경우의 평균값을 구한다
for(size_t j = i + 1; j < A.size(); j++)
{
sum += A[j];
cnt++;
avg = static_cast<double>(sum) / cnt;
//현재 구한 평균 값이, 가장 작은 값이라면
if(avg < min)
{
min = avg;
pos = i;
}
}
}
return pos;
}
4. 결과

반응형
'Algorithm Problem > Codility' 카테고리의 다른 글
| Lesson 6. Sorting - Distinct (0) | 2024.11.09 |
|---|---|
| Lesson 5. Perfix Sums - MinAvgTwoSlice #2 (속도 개선) (0) | 2024.11.03 |
| Lesson 5. Perfix Sums - GenomicRangeQuery #2 (속도 개선) (0) | 2024.10.26 |
| Lesson 5. Perfix Sums - GenomicRangeQuery #1 (0) | 2024.10.26 |
| Lesson 5. Perfix Sums - CountDiv #2 (속도 개선) (0) | 2024.10.21 |